鸡和什么菜一起烧好吃| 名什么中什么| 人的五官指什么| 金刚是什么树的种子| 日行一善下一句是什么| 为什么会得飞蚊症| 甲鱼和什么食物相克| 42属什么| 钼靶检查是什么意思| 子宫饱满是什么意思| 未免是什么意思| 5月5日是什么星座| 爱新觉罗是什么旗| 十一月七号是什么星座| 属虎的生什么属相的宝宝好| 如字五行属什么| 大连机场叫什么名字| 1007是什么星座| 杳什么意思| 玉的五行属性是什么| 甲亢有什么反应| 农历今天什么日子| 痛经吃什么| 骨关节炎吃什么药| 肛门出血什么原因| 62年的虎是什么命| 成都有什么特色美食| 为什么同房后小腹隐隐作痛| 肝疼吃什么药好| 宫颈纳氏腺囊肿是什么意思| 血常规crp是什么意思| 美籍华裔是什么意思| 感冒打什么针| 狗血是什么意思| 望而生畏什么意思| 得莫利是什么意思| 换床有什么讲究| 孙悟空原名叫什么| 梦到火是什么意思| 荷字五行属什么| 梦见被蛇咬了是什么意思| 甲状腺球蛋白高是什么原因| 晚上睡觉多梦是什么原因| 侧重点是什么意思| 禁的拼音是什么| 行尸走肉是什么意思| 没出息什么意思| 瑞夫泰格手表什么档次| 框框是什么意思| 手癣用什么药膏效果好| 吃肝补什么| 嘴唇发白什么原因| 汗疱疹是什么原因引起| 619是什么意思| 羊奶不能和什么一起吃| 鸭子为什么会游泳| 喝酒前吃什么不容易醉| 嵌合体是什么意思| 什么像什么似的造句| 头左边痛是什么原因| hazzys是什么牌子| cva医学上是什么意思| 喝什么茶不影响睡眠| 妊娠纹什么时候开始长| 什么叫丁克| 什么叫白内障| 四十年婚姻是什么婚| 迪士尼狗狗叫什么名字| 风寒感冒和风热感冒有什么区别| 五月底是什么星座| 女人喜欢什么礼物| 小腿灼热感是什么原因| 六月是什么星座的| 月经提前十几天是什么原因| 切除胆囊有什么影响| 产复欣颗粒什么时候吃| 什么饮料解酒| 乙肝抗体是什么意思| 痛风可以喝什么酒| 梦到捡金子首饰是什么意思| hbv是什么病毒| 喝酒不能吃什么东西| 什么蔬菜不能放冰箱| 砭石是什么东西| 西瓜霜是什么做的| 奶粉结块是什么原因| 肚脐下方是什么器官| 红花油和活络油有什么区别| 神经梅毒有什么症状| 3月7号什么星座| 公主切适合什么脸型| 孕妇羊水少吃什么补的快| 及笄是什么意思| 胃低分化腺癌是什么意思| 大虾炒什么菜好吃| 下午四点到五点是什么时辰| 电导率是什么意思| 牙缝越来越大是什么原因| 麻婆豆腐用什么豆腐| 什么药治尿酸高最有效| 什锦是什么意思| 感冒为什么会头痛| 重庆市长是什么级别| 血糖高检查什么项目| 为什么叫香港脚| 注音是什么| 地塞米松是什么药| 2.4什么星座| 燕窝什么时候吃最好| fe是什么意思| 脚上长鸡眼去医院挂什么科| 胃不好喝什么茶好| 活检是什么检查| 为什么会落枕| 角膜塑形镜是什么| 精神焦虑症有什么表现有哪些| 为什么喝酒| 热疹子是什么症状图片| www是什么网| 夏季热是什么病| 骨相美是什么意思| 红绿色盲是什么遗传| 猫咪泪痕重是什么原因| 现代是什么时候| 胃癌手术后吃什么补品| 什么是白平衡| 部长什么级别| 伏藏是什么意思| 牵牛花为什么叫牵牛花| 什么牌子的洗发水好| 海鸥手表属于什么档次| 2月出生的是什么星座| spv是什么| 犯太岁是什么意思| 前白蛋白低是什么意思| mrv是什么检查| 总胆汁酸高是什么原因| 莹五行属性是什么| 毛囊炎用什么药膏| 三维彩超主要检查什么| 脑梗三项是检查什么| plano是什么意思| 冰心原名什么| 为什么会流鼻血什么原因引起的| 湛江有什么好玩的| 稍高回声是什么意思| 转氨酶高吃什么药| 吃完饭恶心是什么原因| 飞蚊症用什么药物治疗最好| 孕妇吃花生对胎儿有什么好处| 肝硬化是什么| 尿白细胞阳性什么意思| 拉稀吃什么药好| rm什么意思| 什么的东风填词语| 谈恋爱是为了什么| 降肝火喝什么茶| 安睡裤是干什么用的| 什么食物含镁| 釜底抽薪什么意思| 野生葛根粉有什么功效| 检查前列腺需要做什么检查| 阴险表情什么意思| 秦始皇的佩剑叫什么剑| 冬天用什么沐浴露好| 符号是什么意思| 扳机是什么意思| 为什么生气会胃疼| 叶公好龙的寓意是什么| 作揖是什么意思| 回门是什么意思| 有眼屎用什么眼药水| 女人缺铁性贫血吃什么好| 尿潜血十一是什么意思| 热锅上的蚂蚁是什么意思| 等位基因是什么| 之虞是什么意思| 防晒霜和隔离霜有什么区别| 四百分能上什么大学| 丝状疣用什么药| 广东有什么市| 为什么鱼和熊掌不可兼得| 贫血都有什么症状| 肾炎吃什么食物好| 什么是甲减有什么症状| 烟卡是什么| com是什么| 1994属什么生肖| 女人梦到地震预示什么| 释迦摩尼是什么意思| 泰国的钱叫什么| 什么是三伏天| 最近发胖过快什么原因| 阴历六月十八是什么日子| 五蕴指什么| 雪燕适合什么人吃| 正月初四是什么星座| 大意失荆州是什么意思| 内科是看什么病的| 梦见过生日是什么意思| 血糖高了会有什么危害| 10点是什么时辰| 婴儿睡觉头上出汗多是什么原因| 脾虚湿盛吃什么药| 托付是什么意思| 邀请的意思是什么| 菜心是什么菜| 复合维生素b什么时候吃最好| 一切有为法是什么意思| 疮痈是什么意思| 刻舟求剑是什么生肖| 大料是什么调料| 腋窝疼是什么原因| 溢水是什么意思| 神经外科治疗什么病| 梦见房子漏水是什么意思| 吃饭吧唧嘴有什么说法| 中国文字博大精深什么意思| 小五行属性是什么| 1996年1月属什么生肖| tpp是什么意思| 俄罗斯是什么人种| ab型和a型生的孩子是什么血型| 冬枣是什么季节的水果| 塞保妇康为什么会出血| 上午十点是什么时辰| 吊销是什么意思| 食道炎症吃什么药最好| 银屑病吃什么药| 胡萝卜炒什么| 浅笑安然是什么意思| 月经老是推后是什么原因| 双肺斑索是什么意思| 什么是足金| 一什么孩子| 白细胞酯酶弱阳性是什么意思| 下肢静脉曲张是什么原因引起的| 山对什么| 痤疮用什么药膏| 早上起来嘴巴发苦是什么原因| 1月14日什么星座| 姨妈期可以吃什么水果| 香蕉有什么功效和作用| 河南为什么叫河南| 肝是什么意思| 半衰期什么意思| kms是什么意思| 邪魅一笑是什么意思| 刺梨有什么功效| 小便有点刺痛是什么原因引起的| 口力念什么| 八面玲珑什么生肖| 大葱什么时候播种| 阴道出血是什么样的| 手不自主颤抖是什么病| 皮疹是什么| 嗓子老有痰是什么原因| 竹肠是什么部位| 散仙是什么意思| 水痘是由什么引起的| 脚出汗是什么原因| 水险痣是什么意思| 五指毛桃有什么作用| nothomme什么牌子| 百度Jump to content

今年中央第二轮巡视锁定26家单位 首触铁路系统

From Wikiversity
百度 吴其璁是花莲东华大学创新育成中心的专员,长期研究小农市集,也曾是“花莲好事集”经理人。

This page belongs to resource collections on Logic and Inquiry.

A propositional calculus (or a sentential calculus) is a formal system that represents the materials and the principles of propositional logic (or sentential logic). Propositional logic is a domain of formal subject matter that is, up to somorphism, constituted by the structural relationships of mathematical objects called propositions.

In general terms, a calculus is a formal system that consists of a set of syntactic expressions (well-formed formulas or wffs), a distinguished subset of these expressions, plus a set of transformation rules that define a binary relation on the space of expressions.

When the expressions are interpreted for mathematical purposes, the transformation rules are typically intended to preserve some type of semantic equivalence relation among the expressions. In particular, when the expressions are interpreted as a logical system, the semantic equivalence is typically intended to be logical equivalence. In this setting, the transformation rules can be used to derive logically equivalent expressions from any given expression. These derivations include as special cases (1) the problem of simplifying expressions and (2) the problem of deciding whether a given expression is equivalent to an expression in the distinguished subset, typically interpreted as the subset of logical axioms.

The set of axioms may be empty, a nonempty finite set, a countably infinite set, or given by axiom schemata. A formal grammar recursively defines the expressions and well-formed formulas (wffs) of the language. In addition a semantics is given which defines truth and valuations (or interpretations). It allows us to determine which wffs are valid, that is, are theorems.

The language of a propositional calculus consists of (1) a set of primitive symbols, variously referred to as atomic formulas, placeholders, proposition letters, or variables, and (2) a set of operator symbols, variously interpreted as logical operators or logical connectives. A well-formed formula (wff) is any atomic formula or any formula that can be built up from atomic formulas by means of operator symbols.

The following outlines a standard propositional calculus. Many different formulations exist which are all more or less equivalent but differ in (1) their language, that is, the particular collection of primitive symbols and operator symbols, (2) the set of axioms, or distingushed formulas, and (3) the set of transformation rules that are available.

Abstraction and application

[edit | edit source]

Although it is possible to construct an abstract formal calculus that has no immediate practical use and next to nothing in the way of obvious applications, the very name calculus indicates that this species of formal system owes its origin to the utility of its prototypical members in practical calculation. Generally speaking, any mathematical calculus is designed with the intention of representing a given domain of formal objects, and typically with the aim of facilitating the computations and inferences that need to be carried out in this representation. Thus some idea of the intended denotation, the formal objects that the formulas of the calculus are intended to denote, is given in advance of developing the calculus itself.

Viewed over the course of its historical development, a formal calculus for any given subject matter normally arises through a process of gradual abstraction, stepwise refinement, and trial-and-error synthesis from the array of informal notational systems that inform prior use, each of which covers the object domain only in part or from a particular angle.

Generic description of a propositional calculus

[edit | edit source]

A propositional calculus is a formal system , whose formulas are constructed in the following manner:

  • The alpha set is a finite set of elements called proposition symbols or propositional variables. Syntactically speaking, these are the most basic elements of the formal language otherwise referred to as atomic formulas or terminal elements. In the examples to follow, the elements of are typically the letters p, q, r, and so on.
  • The omega set is a finite set of elements called operator symbols or logical connectives. The set is partitioned into disjoint subsets as follows:
In this partition, is the set of operator symbols of arity
In the more familiar propositional calculi, is typically partitioned as follows:
A frequently adopted option treats the constant logical values as operators of arity zero, thus:
Some writers use the tilde (~) instead of (?) and some use the ampersand (&) instead of (∧). Notation varies even more for the set of logical values, with symbols like {false, true}, {F, T}, {0, 1}, and {, } all being seen in various contexts.
  • Depending on the precise formal grammar or the grammar formalism that is being used, syntactic auxiliaries like the left parenthesis, "(", and the right parentheses, ")", may be necessary to complete the construction of formulas.

The language of , also known as its set of formulas, well-formed formulas or wffs, is inductively or recursively defined by the following rules:

  1. Base. Any element of the alpha set is a formula of .
  2. Step (a). If p is a formula, then ?p is a formula.
  3. Step (b). If p and q are formulas, then (pq), (pq), (pq), and (pq) are formulas.
  4. Close. Nothing else is a formula of .

Repeated applications of these rules permits the construction of complex formulas. For example:

  1. By rule 1, p is a formula.
  2. By rule 2, ?p is a formula.
  3. By rule 1, q is a formula.
  4. By rule 3, (?pq) is a formula.
  • The zeta set is a finite set of transformation rules that are called inference rules when they acquire logical applications.
  • The iota set is a finite set of initial points that are called axioms when they receive logical interpretations.

Example 1. Simple axiom system

[edit | edit source]

Let , where are defined as follows:

  • The alpha set is a finite set of symbols that is large enough to supply the needs of a given discussion, for example:

Of the three connectives for conjunction, disjunction, and implication (∧, ∨, and →), one can be taken as primitive and the other two can be defined in terms of it and negation (?). Indeed, all of the logical connectives can be defined in terms of a sole sufficient operator. The biconditional (↔) can of course be defined in terms of conjunction and implication, with a ↔ b defined as (a → b) ∧ (b → a).

Adopting negation and implication as the two primitive operations of a propositional calculus is tantamount to having the omega set partition as follows:

An axiom system discovered by Jan Lukasiewicz formulates a propositional calculus in this language as follows:

The inference rule is modus ponens:

  • From p, (pq), infer q.

Then we have the following definitions:

  • pq is defined as ¬pq.
  • pq is defined as ¬(p ⇒ ¬q).

Example 2. Natural deduction system

[edit | edit source]

Let , where are defined as follows:

  • The alpha set is a finite set of symbols that is large enough to supply the needs of a given discussion, for example:
  • The omega set partitions as follows:

In the following example of a propositional calculus, the transformation rules are intended to be interpreted as the inference rules of a so-called natural deduction system. The particular system presented here has no initial points, which means that its interpretation for logical applications derives its theorems from an empty axiom set.

  • The set of initial points is empty, that is,
  • The set of transformation rules, , is described as follows:

Graphical calculi

[edit | edit source]
Main article : Logical graph

It is possible to generalize the definition of a formal language from a set of finite sequences over a finite basis to include many other sets of mathematical structures, so long as they are built up by finitary means from finite materials. What's more, many of these families of formal structures are especially well-suited for use in logic.

For example, there are many families of graphs that are close enough analogues of formal languages that the concept of a calculus is quite easily and naturally extended to them. Indeed, many species of graphs arise as parse graphs in the syntactic analysis of the corresponding families of text structures. The exigencies of practical computation on formal languages frequently demand that text strings be converted into pointer structure renditions of parse graphs, simply as a matter of checking whether strings are wffs or not. Once this is done, there are many advantages to be gained from developing the graphical analogue of the calculus on strings. The mapping from strings to parse graphs is called parsing and the inverse mapping from parse graphs to strings is achieved by an operation that is called traversing the graph.

References

[edit | edit source]
  • Brown, Frank Markham (2003), Boolean Reasoning: The Logic of Boolean Equations, 1st edition, Kluwer Academic Publishers, Norwell, MA. 2nd edition, Dover Publications, Mineola, NY, 2003.
  • Chang, C.C., and Keisler, H.J. (1973), Model Theory, North-Holland, Amsterdam, Netherlands.
  • Kohavi, Zvi (1978), Switching and Finite Automata Theory, 1st edition, McGraw–Hill, 1970. 2nd edition, McGraw–Hill, 1978.
  • Korfhage, Robert R. (1974), Discrete Computational Structures, Academic Press, New York, NY.
  • Lambek, J., and Scott, P.J. (1986), Introduction to Higher Order Categorical Logic, Cambridge University Press, Cambridge, UK.
  • Mendelson, Elliot (1964), Introduction to Mathematical Logic, D. Van Nostrand Company.

Resources

[edit | edit source]
  • Klement, Kevin C. (2006), “Propositional Logic”, in James Fieser and Bradley Dowden (eds.), Internet Encyclopedia of Philosophy. Online.

Syllabus

[edit | edit source]

Focal nodes

[edit | edit source]

Peer nodes

[edit | edit source]

Logical operators

[edit | edit source]

[edit | edit source]

Relational concepts

[edit | edit source]

Information, Inquiry

[edit | edit source]

[edit | edit source]

Document history

[edit | edit source]

Portions of the above article were adapted from the following sources under the GNU Free Documentation License, under other applicable licenses, or by permission of the copyright holders.

咖喱块什么牌子的好 精尽人亡是什么意思 什么头 孕妇吃什么蔬菜对胎儿好 屏风是什么
申时是什么时间 什么是幂 优势卵泡是什么意思 狗狗吃胡萝卜有什么好处 监守自盗什么意思
雾化是什么 为什么精子射不出来 骨折补钙吃什么钙片好 师范类是什么意思 血常规主要检查什么
赶尽杀绝什么意思 脂肪瘤应该挂什么科 dna是什么意思 包皮炎用什么药最有效 双肺纹理增多什么意思
不感冒是什么意思hcv9jop4ns8r.cn 肌酐高吃什么药hcv9jop2ns3r.cn 喝豆腐脑有什么好处和坏处hcv9jop8ns3r.cn 化学阉割什么意思hcv9jop3ns3r.cn 5.7是什么星座wmyky.com
什么什么自若hcv9jop5ns9r.cn 村姑是什么意思hcv7jop9ns5r.cn 2000年属龙的是什么命hcv9jop6ns6r.cn psg是什么意思hcv9jop5ns1r.cn 幽门螺杆菌吃什么药最好zsyouku.com
口出狂言是什么生肖hcv8jop2ns2r.cn 北阳台适合种什么植物hcv7jop9ns0r.cn 农历六月十八是什么日子hcv7jop6ns1r.cn 友女是什么意思hcv8jop4ns5r.cn 什么是四环素牙hcv8jop1ns7r.cn
娟五行属什么hcv8jop4ns9r.cn 减肥期间吃什么好hcv8jop4ns6r.cn 湦是什么意思hcv9jop3ns8r.cn 婚检是什么意思hcv8jop4ns6r.cn 梦见吃桃子是什么预兆hcv8jop1ns7r.cn
百度